A New Sesquiterpene from the Roots of Biondia hemsleyana

Xing Gen TAN, Pei CAO, Shu Lin PENG, Li Sheng DING*
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

Abstract

A new sesquiterpene with a unusual modified germacrane skeleton was isolated from the ethanol extracts of the roots of Biondia hemsleyana and its structure was elucidated as 3β-hydroxy-4,14-cyclogermacra-11-en-9-one by the spectroscopic methods and X-ray crystallography.

Keywords: Biondia hemsleyana, Asclepiadaceae, sesquiterpene, modified germacrane.

Biondia hemsleyana (Warb.) Tsiang (Asclepiadaceae), an endemic plant mainly distributed in southwestern China, is used as a folk medicine for the treatment of stomachache ${ }^{1,2}$. Five new pregnane glycosides, biondianosides $A \sim E$, had been isolated from these two closely related species, B. hemsleyana ${ }^{3,4}$ and B. chinensis ${ }^{5}$. A new sesquiterpene derived from a germacrane skeleton ${ }^{6}$ was isolated from the ethanol extracts of the roots of B. hemsleyana by repeated chromatography on normal and reversed phase silica gel. The unusual modified germacrane skeleton has not been reported from the species of Asclepiadaceae until now.

Compound 1 was obtained as colorless prisms from $95 \% \mathrm{EtOH}(15 \mathrm{mg})$, mp 126$128^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}+8.0\left(\mathrm{CHCl}_{3}, c 0.08\right)$. Its molecular formula $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ was deduced from HR-ESI-MS ($[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 237.1852$, calcd. 237.1854). The IR spectrum indicated the presence of hydroxyl ($3380 \mathrm{~cm}^{-1}$) and carbonyl ($1670 \mathrm{~cm}^{-1}$) groups. The ${ }^{13} \mathrm{C}$ NMR spectrum showed fifteen carbon signals, DEPT analysis indicated the presence of two primary, seven secondary, three tertiary and three quaternary carbons. In order to determine its structure, X-ray crystallography has been carried out. The structure of compound $\mathbf{1}$ was confirmed unambiguously by investigation of X-ray diffraction ${ }^{7}$ since it

Figure 1 The structure and key HMBC correlations for 1

[^0]was difficult to determine the linkages of carbon, hydrogen and oxygen atoms only by the HMBC spectrum (Figure 1). A computer-generated drawing of the final X-ray model of $\mathbf{1}$ is given in Figure 2.

The assignment for all carbons, as well as for all hydrogens of $\mathbf{1}$ was initiated from the long-range coupling networks observed between the methyl protons of isopropylene bonded to C-7 with the adjacent carbons in an HMBC experiment together with HSQC spectrum (Table 1). Because bicyclo [5.3.1] undecane derivatives were early recognized as potential anti-Bret's-rule candidates and the absolute configuration had been deduced from the data of stereochemical analysis ${ }^{8}$, the structural framework of the new sesquiterpene can be identified reasonably as 3β-hydroxy-4,14-cyclogermacra-11-en-9-one.

Figure 2 The X-ray crystal structure for $\mathbf{1}$

Table 1 The ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectral data of $\mathbf{1}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$

No.	δ_{C}	$\delta_{\mathrm{H}} \mathrm{J}(\mathrm{Hz})$	$\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$
1	$18.0(\mathrm{t})$	$2.13(1 \mathrm{H}, \mathrm{dt}, 13.4,2.2), 1.59(1 \mathrm{H}, \mathrm{tt}, 13.4,4.8)$	$\mathrm{C}-2,3,9,10$
2	$25.5(\mathrm{t})$	$1.99(1 \mathrm{H}, \mathrm{tt}, 14.0,3.0), 1.49(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, 14.0)$	$\mathrm{C}-1,3,4,10$
3	$74.4(\mathrm{~d})$	$3.34(1 \mathrm{H}, \mathrm{br} . \mathrm{s})$	$\mathrm{C}-1,2,4,5,14$
4	$38.7(\mathrm{~s})$		
5	$33.9(\mathrm{t})$	$1.26(1 \mathrm{H}, \mathrm{t}, 16.0), 1.09(1 \mathrm{H}, \mathrm{dd}, 16.0,7.6)$	$\mathrm{C}-4,6,7,14,15$
6	$27.7(\mathrm{t})$	$1.70(1 \mathrm{H}, \mathrm{t}, 13.0), 1.45(1 \mathrm{H}, \mathrm{dd}, 13.0,7.6)$	$\mathrm{C}-4,5,7,8,11$
7	$50.5(\mathrm{~d})$	$2.41(1 \mathrm{H}$, br. t, 12.0)	$\mathrm{C}-11$
8	$44.5(\mathrm{t})$	$2.90(1 \mathrm{H}, \mathrm{t}, 12.0), 2.19(1 \mathrm{H}$, br. d, 8.5$)$	$\mathrm{C}-6,7,9,10,11$
9	$215.7(\mathrm{~s})$		$\mathrm{C}-1,2,4,9,14$
10	$47.0(\mathrm{~d})$	$2.35(1 \mathrm{H}, \mathrm{br} . \mathrm{s})$	
11	$149.8(\mathrm{~s})$		$\mathrm{C}-7,11,13$
12	$109.6(\mathrm{t})$	$4.76(1 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{s})$	$\mathrm{C}-7,11,12$
13	$21.1(\mathrm{q})$	$1.77(3 \mathrm{H}, \mathrm{s})$	$\mathrm{C}-3,4,9,10,15$
14	$29.3(\mathrm{t})$	$2.17(1 \mathrm{H}, \mathrm{d}, 14.6), 1.93(1 \mathrm{H}, \mathrm{dd}, 14.6,5.4)$	$\mathrm{C}-3,4,5,14$
15	$25.3(\mathrm{q})$	$0.91(3 \mathrm{H}, \mathrm{s})$	

A suitable crystal that formed in the orthorhombic space group P212121 was selected for the study and mounted on glass fibers, coated with epoxy, and placed on a Simens P4 diffractometer. The accurate lattice constants were $\mathrm{a}=6.068(1), \mathrm{b}=11.124$ (2), $c=20.103$ (4) $\AA, V=1356.9$ (4) \AA^{3} and $Z=4$ with four molecules $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}\right)$ in the asymmetric unit. Its calculated density was $\mathrm{Dc}=1.157 \mathrm{~g} / \mathrm{cm}^{3}$. All unique diffraction maxima with $2.03<\theta<27.00^{\circ}$ were collected in ω-scan mode with graphitemonchromated Mo K α radiations ($0.71073 \AA$). A total of 1887 unique reflections was collected, and of those 1734 were judged observed $[\mathrm{I}>2 \sigma(\mathrm{I})$] and used in subsequent calculations. The structure was phased using direct methods (SHELXTL) and refined using full-matrix least-squares techniques with anisotropic heavy atoms and isotropic riding hydrogens to conventional crystallographic residual of $0.0366\left(\mathrm{R}_{\mathrm{w}}=0.0779\right)$ for the observed data.

Acknowledgments

The authors are grateful to Kai Bei YU, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences for the measurement of X-ray crystallography; Hui Ling Liang, Kunming Institute of Biology, CAS for the analysis of HR-ESI-MS and Hua Yi QI, Chengdu Institute of Biology, CAS for the measurement of NMR spectra.

References and Note

1. T. S. Ying, Y. L. Zhang, D. E. Boufford, The Endemic Genera of Seed Plants of China, Science Press, Beijing, 1993, 159.
2. H. Y. Zhang, Z. Y. Zhang, The Handbook of Traditional Chinese Medicine Sources in China, Science Press, Beijing, 1994, 973.
3. X. G. Tan, X. R. Zhang, M. K. Wang, et al., Chin. Chem. Lett., 2002, 13 (6), 547.
4. X. G. Tan, X. R. Zhang, S. L. Peng, et al., Chem. J. Chin. Univ., 2003, 24 (3), 436.
5. X. G. Tan, S. L. Peng, X. Liao, et al., Chin. Chem. Lett., 2003, 14 (10), 1027.
6. G. Appendino, P. Gariboldi, G. M. Nano, Phytochemistry, 1982, 21 (5), 1099.
7. The data of X-ray crystallographic analysis were deposited to the editorial office CCL.
8. U. Berg, E. Butkus, T. Frejd, et al., Tetrahedron, 1997, 53 (14), 5339.

Received 16 Augest, 2004

[^0]: *E-mail: lsding@cib.ac.cn

